Translate

воскресенье, 16 ноября 2014 г.

10 необычных защитных механизмов человеческого организма



Организм человека – это очень сложное сочетание самых разных систем, которые, порой, очень сложны для нашего понимания или полноценного исследования. Одной из главных систем, на мой взгляд, является та, которая защищает нашу с вами жизнь от различных внешних угроз, позволяя тем самым избежать нежелательных повреждений, травм и прочих не очень приятных последствий. Давайте немного поговорим о некоторых защитных механизмах, которые задействованы в человеческом теле.

1. Зевание
Как же приятно порой бывает хорошенько зевнуть с утра на работе. Но для чего мы зеваем? Механизм зевоты на сегодняшний день исследован очень плохо, но кое-что учёным всё же удалось выяснить. Одной из основных причин, по которой человек зевает, является перегрев или перегрузка головного мозга. Если мы активно работаем, мало спим или недосыпаем, испытываем психологическое напряжение или стресс – организм запускает специальный защитный механизм. Вдыхая во время зевка большое количество воздуха, мы слегка охлаждаем мозг через верхнее нёбо, а также раскрываем дыхательные пути, увеличиваем поступление кислорода в кровь и расслабляем свои мышцы. В общем-то, зевание весьма полезно для нашего организма, так что старайтесь зевать как можно чаще – это и приятно, и полезно.

2. Чихание
Механизм чихания запускается в нашем организме в тот момент, когда в носовой полости скапливается слишком много аллергенов, микробов, пыли или вы просто переборщили с чёрным молотым перцем на кухне. В этот момент происходит раздражение специальных нервных окончаний и человек чихает, избавляясь от всего лишнего, что было в его носоглотке. Главное, чтобы перед вами в этот момент никого не оказалось, а то неудобно получится, ведь скорость выдыхаемого воздуха при чихании достигает 160 километров в час, а в одном чихе в среднем может содержаться более 100 тысяч вредоносных бактерий. Другими словами, старайтесь прикрываться платком во время чиха, ну, или хотя бы ладонью – все бактерии вы, конечно, не поймаете, но хотя бы уменьшите их разброс. Если человек чихает постоянно на протяжении длительного времени, может оказаться, что рядом с ним находится сильный аллерген, на который ему намекает организм, мол, найди и выброси, а то всю квартиру своими слизистыми выделениями забрызгаешь. Кстати, вы знали, что у некоторых людей есть аллергия на солнечный свет? Представьте себе: проснулся человек утром и давай чихать до самого заката. Хорошо, что встречается такое не очень часто.

3. Потягивание
Потягивание – это тоже своеобразный механизм защиты организма, хотя, мы его практически полностью контролируем и потягиваемся по собственному желанию. Тем не менее, этот процесс очень важен для нормального функционирования нашего тела. Во время потягивания организм готовится к физическим нагрузкам, которые ожидают его в течение дня, разминаются мышцы после сна, восстанавливается кровообращение, улучшается настроение и так далее. Учёные утверждают, что потягивание даже улучшает ваши вкусовые и тактильные ощущения, так что пока вы не потянулись, к завтраку даже не притрагивайтесь!

4. Икота
Икота – это своеобразный сигнал организма на то, что что-то не так с нашей пищеварительной системой. Разумеется, встречается икота и без какой-либо на то причины или как следствие какого-либо серьёзного заболевания, но чаще всего это признак того, что организм нам говорит: «Хватит жрать!». Когда человек есть торопливо, глотает еду большими кусками или элементарно переедает – в этот момент происходит раздражение блуждающего нерва, тесно связанного с нашим желудком и диафрагмой. Во всём нужно знать меру и тщательно пережёвывать пищу, прежде чем её проглотить. Универсального средства борьбы с икотой по сей день не существует. Одним помогает задержка дыхания, другим – стакан воды, а третьим – вообще ничего не помогает. Они просто лежат и смиренно ждут, когда же всё это закончится.

5. Миоклонические судороги
Вам знакомо чувство, когда вы лежите в постели, начинаете проваливаться в приятный обволакивающий вас сон, и в эту самую секунду всё ваше тело будто бьют током. Все мышцы в один миг сокращаются так сильно, что вас аж подбрасывает на кровати, от чего вы немедленно просыпаетесь и растерянно озираетесь в темноте. Это явление тоже является частью защитного комплекса нашего с вами организма и называется оно «миоклонической судорогой». Дело в том, что когда вы начинаете засыпать, частота вашего дыхания резко снижается, а пульс слегка замедляется, мышцы расслаблены, а в совокупности подобное состояние ваш мозг ошибочно воспринимает, как предсмертное. Именно поэтому он отправляет сильнейший импульс для того, чтобы спасти своего хозяина. Можно сказать, что мозг таким образом пытается вас реанимировать с помощью встроенного в ваше тело электрошокера. Разумеется, после того как выясняется, что вы вовсе даже и не умирали, мозг немного успокаивается и позволяет вам нормально уснуть. Но согласитесь, приятно осознавать, что он неустанно следит за нашей безопасностью.

6. Разбухание кожи от влажности
Думаю, что все сталкивались с распухшими от воды подушечками пальцев на руках и ногах, после того как пролежишь в ванной дольше обычного. Смешной рисунок получается на коже, детей это особенно забавляет. Казалось бы, что может в этом быть полезного в этом явлении для нашего организма? Как выяснили учёные, набухание кожи происходит не случайно. Наш организм чувствует, что столкнулся с повышенной влажностью, а где влажность – там может быть скользко. Поэтому кожа на кончиках наших пальцев немедленно начинает преобразовываться для того, чтобы повысить её сцепление с гладкими поверхностями. Другими словами, организм делает всё, чтобы мы не поскользнулись на мокром полу и смогли зацепиться своими новыми «суперпальцами» за что-нибудь, прежде чем упасть и больно удариться обо что-то твёрдое. Кто сказал, что мы немножко не супергерои после этого?

7. Потеря памяти
Потеря памяти в некоторых случаях – это не результат встречи головы с тяжёлым тупым предметом, а весьма хитроумный способ защиты нашей неустойчивой психики от не самых приятных воспоминаний. Известны многочисленные случаи, когда жертвы насилия, различных катастроф или стихийных бедствий напрочь забывали о наиболее страшных моментах. И, с одной стороны, наш организм можно в этом понять. Зачем записывать в постоянную память то, что не приносит человеку никакой радости и приятных ощущений? Лучше навсегда удалить это с внутреннего накопителя и избавить хозяина от лишних переживаний. Кстати, вы знаете, почему после принятия определённой дозы алкоголя, мы перестаём запоминать что-либо? Когда человек сильно перебарщивает с алкоголем и приводит большую часть своих моторных функций в полную недееспособность, организму начинает казаться, что тело подвергается огромным перегрузкам и многочисленным угрозам извне, а это значит, что вряд ли человек сейчас переживает свои «лучшие времена». Поэтому запись воспоминаний попросту выключается, чтобы перестраховаться и не позволить вам на утро вспомнить практически ничего. Вот и мучайся потом размышлениями: «Что ж я вчера такого натворил, что сегодня проснулся на чердаке среди голубей, да ещё и с баяном в руках?».

8. Гусиная кожа
Смешные пупырышки, которые возникают на нашей коже в моменты, когда нам холодно, или когда мы крайне эмоционально возбуждены, тоже являются частью оборонного комплекса нашего тела. Первая и самая главная их функция – уменьшение выделения тепла через поры в нашей коже, за счёт чего организму куда проще согреться в неблагоприятных климатических условиях. А вторая эмоциональная реакция возникновения «гусиной кожи» не исследована до конца, но учёные подозревают, что всё это пришло к нам из далёкого прошлого, от наших доисторических предков. В то время они ещё не были настолько лысыми, как мы сейчас. Их тела были покрыты густым волосяным покровом, а его грех было не использовать себе на пользу. Когда крошечные мышцы рядом с волосяной луковицей напрягаются от какого-либо эмоционального всплеска (а в то время чаще всего в природе встречался страх), они приподнимают каждый волосок в вертикальное положение. Всё это, в свою очередь, приводит к тому, что шерсть на теле наших предков моментально распушалась, за счёт чего они визуально становились чуть больше и выглядели куда более устрашающе для своих врагов (сейчас этот механизм активно используют домашние кошки и многие другие млекопитающие). Шли тысячелетия, эволюция не щадила никого. Мы облысели, а защитный механизм сохранился по сей день. И когда мы переживаем особенно эмоциональный момент – организм пытается распушить наш мех, которого у нас практически не осталось. Из-за этого мы становимся похожи на странного перевозбуждённого гуся, а не на величественного пушистого манула. Очень жаль, было бы полезно порой стать чуточку больше и пушистее, чтобы впечатлить кого-нибудь.

9. Слёзы
Помимо защитной функции слизистой оболочки, при попадании в глаз инородных тел слёзы служат ещё и инструментом эмоциональной защиты организма. Учёные считают, что в стрессовых ситуациях организм создаёт новый, очень мощный очаг раздражения, который призван отвлечь человека от той боли, которую он испытывал до этого. Когда ребёнок ударился или порезался, кора его головного мозга усиливает самые различные функции организма: дыхательные, двигательные, функции желез внутренней и внешней секреции. Но главным внешним признаком того, что человек испытывает физическую или эмоциональную боль, конечно же, являются слёзы. Повышенное слёзоотделение позволяет снизить возбуждение коры головного мозга, вызванного ушибом или порезом. А происходит это потому, что во время плача слёзы попадают ещё и в полость носа, где обильно орошают слизистую оболочку, а оболочка эта, в свою очередь, насыщена рецепторами тройничного и обонятельного нервов, которые передают сигналы напрямую в мозг, отвлекая его от основного источника раздражения, то есть боли. Так что, когда человек плачет, он действительно отчасти притупляет свою боль. Кстати, в середине 80-х в СССР было проведено специальное исследование, в ходе которого учёные выяснили, что раны на животных заживают куда быстрее, если у тех вызвать слёзоотделение. А вот у тех животных, слёзные железы которых были удалены, раны заживали куда дольше обычного. Как тут не плакать, когда это оказывается так полезно?

10. Дополнительные чувства
Несмотря на то, что чаще всего мы слышим о пяти чувствах, которыми наделён человек, этих чувств у нас гораздо больше. Перечислить их все я вряд ли возьмусь, так как это тема для куда более развёрнутого материала, тем не менее пару-тройку примеров я вам всё-таки приведу. Представьте себе, что в одной руке вы держите раскалённый утюг, а вторую руку подносите близко к его нагретой поверхности. Вы чувствуете тепло и понимаете, что если прикоснуться к утюгу сейчас – вы испытаете боль, хотя ни одно из ваших пяти чувств вам не может этого подсказать. Вы не видите жар, не слышите его, не ощущаете его на вкус, не прикасаетесь к нему физически, не чувствуете его запаха. Но всё же вы ощущаете тепло и потенциальную угрозу для своей безопасности. Это чувство обеспечивается сенсорами тепла, расположенными в вашей коже. А какое чувство помогает нам почувствовать боль или осознать, что нас повесили вниз головой? Ещё один очень простой пример: попробуйте закрыть глаза и дотронуться пальцем до кончика носа. Вы сейчас не использовали ни одно из пяти своих основных чувств. Это чувство называется «проприоцепция» — оно позволяет нам точно знать, где находятся наши конечности и вообще части тела, благодаря знанию размеров и формы своего тела, а также при информационной поддержке мозга, который отслеживает состояние и положение каждой отдельной нашей мышцы в пространстве. Все эти, а также многие другие дополнительные чувства являются едва ли не основным защитным механизмом человеческого тела, который практически каждый момент времени не позволяет нам оказаться в беде.

Московские снежинки


Макроснимок снежинок

©Алексей Клятов
В макроснимках пропорции снежинок настолько идеальны,
 что порой кажутся нереальными.



Фотограф из Москвы Алексей Клятов любит фотографировать 

ночные городские пейзажи. Кроме этого, у него получаются красивые и, 
с научной точки зрения, удивительные астрофотографии, макрофотографии и т.д.
 У фотографа есть целая коллекция макроснимков снежинок, которые порой кажутся сильно 
отредактированными   какими-нибудь фоторедакторами –
 настолько нереальными кажутся они вблизи.
 Однако Алексей под каждой своей фотографией подробно описывает процесс съемки
 и убеждает в том, 
что все идеальные изгибы – это творение природы без участия человека.
 Сам Алексей называет себя фотографом-лентяем и уверяет: есть еще много чего,
 что можно передать через макросъемку.
©Алексей Клятов


©Алексей Клятов


©Алексей Клятов


©Алексей Клятов


©Алексей Клятов


©Алексей Клятов


©Алексей Клятов


©Алексей Клятов



Naked Science
http://naked-science.ru/article/photo/moskovskie-snezhinki

Происхождение пространства и времени (Re.) («Science-Other»)


Многие исследователи считают, что физика не будет законченной, пока не сможет объяснить поведение пространства, времени и их происхождение.

«Представьте себе, однажды вы просыпаетесь и понимаете, что живете внутри компьютерной игры. Если это так, тогда все вокруг, весь трехмерный мир - это всего лишь иллюзия, информация, закодированная на двумерной поверхности»
— Марк Ван Раамсдонк — физик, Университет Британской Колумбии, Ванкувер, Канада.

Это сделало бы нашу Вселенную с ее тремя пространственными измерениями, своего рода голограммой, источник которой находится в низших измерениях.

Этот «голографический принцип» довольно необычен для теоретической физики. Но Ван Раамсдонк является членом небольшой группы исследователей, которые считают, что это вполне нормально. Просто ни один из столпов современной физики: ни общая теория относительности, которая описывает гравитацию как искривление пространства и времени, ни квантовая механика, не могут объяснить существование пространства и времени. Даже теория струн, описывающая элементарные нити энергии, не может этого сделать. 

Ван Раамсдонк и его коллеги убеждены, что необходимо дать конкретное представление понятий пространства и времени, пусть даже такое во многом нелепое, как голография. Они утверждают, что радикальное переосмысление реальности является единственным способом объяснить, что происходит, когда бесконечно плотная сингулярность в центре черной дыры искажает пространство-время до неузнаваемости. Оно так же поможет объединить квантовую теорию и общую теорию относительности, а этого теоретики пытаются добиться уже не одно десятилетие. 

«Все наши опыты свидетельствуют о том, что вместо двух полярных концепций реальности, должна быть найдена одна всеобъемлющая теория»
— Абэй Аштекар — физик, Университет штата Пенсильвания, Юниверсити-Парк, штат Пенсильвания

Гравитация как термодинамика
Но ради чего все эти попытки? И как найти то самое «сердце» теоретической физики?

Ряд поразительных открытий, сделанных в начале 1970-х годов, натолкнули на мысль, что квантовая механика и гравитация тесно связаны с термодинамикой.

В 1974 году Стивен Хокинг из Кембриджского университета в Великобритании показал, что квантовые эффекты в космосе вокруг черной дыры могут привести к выбросу излучения высокой температуры. Другие физики быстро отметили, что это явление является довольно общим. Даже в совершенно пустом пространстве астронавт, испытывающий ускорение, будет ощущать вокруг себя тепло. Эффект слишком мал, чтобы его можно было заметить в случае с космическим кораблем, но само по себе предположение казалось фундаментальным. И если квантовая теория и общая теория относительности правильны (что подтверждается экспериментами), то излучение Хокинга действительно существует.

За этим последовало второе ключевое открытие. В стандартной термодинамике объект может излучать тепло только за счет уменьшения энтропии, меры количества квантовых состояний внутри него. То же самое и с черными дырами; еще до появления доклада Хокинга в 1974 году Джейкоб Бекенштейн, который в настоящее время работает в Еврейском университете в Иерусалиме, предположил, что черные дыры обладают энтропией. Но есть разница. В большинстве объектов энтропия пропорциональна числу атомов объекта, а значит и объему. Но энтропия черной дыры пропорциональна площади ее горизонта событий, границы, из которой даже свет не может вырваться. Как будто в этой поверхности закодирована информация о том, что внутри (прям как двумерные голограммы кодируют трехмерное изображение).

В 1995 году Тед Джекобсон, физик из Мэрилендского университета в Колледж-Парке, скомбинировал эти два открытия и предположил, что каждая точка в пространстве находится на крошечном "горизонте черной дыры", который также подчиняется пропорции энтропия-площадь. Даже уравнения Эйнштейна удовлетворяют этому условию (естественно, физик оперировал термодинамическими понятиями, а не пространством-временем).

«Возможно, это позволит нам узнать больше о происхождении гравитации", - говорит Якобсон. Законы термодинамики являются статистическими, поэтому его результат позволяет предположить, что гравитация – явление также статистическое (макроскопическое приближение к невидимым компонентам пространства-времени).

В 2010 году эта идея шагнула еще дальше. Эрик Верлинде, специалист по теории струн из университета Амстердама, предположил, что статистическая термодинамика пространственно-временных составляющих могла дать толчок закону Ньютона о гравитационном притяжении.

В другой работе Тану Падманабан, космолог из Межвузовского центра астрономии и астрофизики в Пуне, показал, что уравнения Эйнштейна можно переписать в форме, идентичной законам термодинамики, как и многие другие альтернативные теории тяжести. В настоящее время Падманабан работает над обобщением термодинамического подхода, пытаясь объяснить происхождение и величину темной энергии, таинственной космической силы, ускоряющей расширение Вселенной.

Подобные идеи проверить эмпирически крайне сложно, но не невозможно. Чтобы понять, состоит ли пространство-время из отдельных компонентов, можно провести наблюдение за задержкой фотонов высоких энергий, путешествующих к Земле от далеких космических объектов, таких как сверхновые и γ-всплески. 

В апреле Джованни Амелино-Камелия, исследователь квантовой гравитации из Римского Университета, и его коллеги обнаружили намеки именно на подобные задержки фотонов, идущих от γ-всплеска. Как говорит Амелино-Камелия, результаты не являются окончательными, но группа планирует расширить свои поиски, чтобы зафиксировать время движения нейтрино высоких энергий, создаваемых космическими событиями. 

«Если теория не может быть проверена, то наука для меня не существует. Она превращается в религиозные убеждения, которые не представляют для меня никакого интереса»
— Джованни Амелино-Камелия — исследователь квантовой гравитации, Римский Университет

Другие физики концентрируются на лабораторных испытаниях. В 2012 году, например, исследователи из Венского университета и Имперского колледжа Лондона провели настольный эксперимент, в котором микроскопические зеркала перемещаются при помощи лазеров. Они утверждали, что пространство-время в Планковском масштабе приведет к изменению света, отраженного от зеркала.
Петлевая квантовая гравитация

Даже если термодинамический подход верен, он все равно ничего не говорит о фундаментальных составляющих пространства и времени. Если пространство-время представляет собой ткань, то каковы ее нити?

Один из возможных ответов вполне буквален. Теория петлевой квантовой гравитации, которую выдвинул в середине 1980-х Аштекар и его коллеги, описывает ткань пространства-времени как растущую паутину из нитей, которые несут информацию о квантованных площадях и объемах областей, через которые они проходят. Отдельные нити сети должны, в конечном итоге, образовывать петли. Отсюда и название теории. Правда, она не имеет ничего общего с гораздо более известной теорией струн. Последние движутся вокруг пространства-времени, тогда как нити и есть пространство-время, а информация, которую они несут, определяет форму пространственно-временной ткани вокруг них.

Петли – это квантовые объекты, однако, они также определяют минимальную единицу площади и, во многом, таким же образом, как и обычная квантовая механика определяют минимальную энергию электрона в атоме водорода. Попытайтесь вставить дополнительные нити меньшей площади, и они просто отсоединятся от остальной сети и не смогут больше связаться ни с чем.
Они как бы выпадают из пространства-времени.

Минимальная площадь хороша тем, что петлевая квантовая гравитация не может сжать бесконечное количество кривых в бесконечно малую точку. Это означает, что она не может привести к тем особенностям, когда уравнения Эйнштейна рушатся: в момент Большого Взрыва или в центре черных дыр.

Воспользовавшись этим фактом, в 2006 году Аштекар и его коллеги представили серию моделей, в которых повернули время вспять и продемонстрировали то, что было до Большого взрыва. По мере приближения к фундаментальному пределу размера, продиктованному петлевой квантовой гравитацией, сила отталкивания раскрыла и зафиксировала сингулярность открытой, превратив ее в туннель к космосу, предшествующему нашему.

В этом году Родольфо Гамбини из Республиканского Университета Уругвая в Монтевидео и Хорхе Пуйин из Университета Луизианы в Батон-Руж представили аналогичные модели, но уже для черной дыры. Если двигаться глубоко в сердце черной дыры, то можно обнаружить не сингулярность, а тонкий пространственно-временной туннель, ведущий в другую часть космоса. 

Петлевая квантовая гравитация не является полноценной теорией, так как она не содержит никаких других сил. Кроме того, физикам еще предстоит показать, как «получилось» обычное пространство-время из информационной сети. Но Даниэле Орити, физик из Института гравитационной физики Макса Планка в Гольме, надеется найти вдохновение в работе ученых, представивших экзотические фазы материи, которая совершает переходы, описанные квантовой теорией поля. Орити и его коллеги ищут формулы для описания того, как Вселенная могла бы проходить аналогичные фазы от набора дискретных петель к плавному и непрерывному пространству-времени. 

Причинный ряд
Разочарования заставили некоторых исследователей придерживаться минималистской программы, известной как теория причинного ряда. Основанная Рафаэлем Соркиным, теория постулирует, что строительные блоки пространства-времени – это простые математические точки, связанные либо с прошлым, либо с будущим.

Это «скелетное» представление причинности, которая утверждает, что более раннее событие может повлиять на более позднее, но не наоборот. В результате сеть как растущее дерево превращается в пространство-время.

«Пространство появляется из точки так же, как температура выходит из атома. Нет смысла говорить об одном атоме, значение заключено в их большом количестве»
— Рафаэль Соркинфизик, Институт Теоретической Физики "Периметр" в Ватерлоо, Канада

В конце 1980-х Соркин использовал эту структуру, чтобы представить число точек, которое должна включать Вселенная, и пришел к выводу, что они должны быть причиной малой внутренней энергии, которая ускоряет расширение Вселенной. Несколько лет спустя открытие темной энергии подтвердило его догадку. "Люди часто думают, что квантовая гравитация не может сделать проверяемых предсказаний, но здесь именно тот случай", - говорит Джо Хенсон, исследователь квантовой гравитации из Имперского колледжа в Лондоне. " Если значение темной энергии было бы больше или его не было бы совсем, тогда теория причинного ряда была бы исключена".

Причинная динамическая триангуляция
Едва ли найдутся доказательства, однако теория причинного ряда предложила несколько других возможностей, которые можно было бы проверить. Некоторые физики обнаружили, что гораздо удобнее использовать компьютерное моделирование. Идея, появившаяся в начале 1990-х, состоит в аппроксимации неизвестных фундаментальных составляющих крошечными кусочками обычного пространства-времени, оказавшимися в бурлящем море квантовых флуктуаций, и наблюдении за тем, как эти кусочки спонтанно соединяются в более крупные структуры.

«Первые попытки аппроксимации неизвестных фундаментальных составляющих крошечными кусочками обычного пространства-времени были неудачными. Строительные блоки пространства-времени были простыми гиперпирамидами, четырехмерные прототипы трехмерных тетраэдров, а предполагаемое соединение позволило им свободно комбинироваться. В результате получилась серия странных "вселенных", в которых было слишком много измерений (или слишком мало), часть из них существовала сама по себе, а часть разрушалась. Это была попытка показать то, что нас окружает. В конце концов, измерение времени не похоже на три измерения пространства. Мы не можем путешествовать назад и вперед во времени, поэтому визуализация была изменена с учетом причинности. Тогда мы обнаружили, что пространственно-временные кусочки начали собираться в четырехмерные вселенные со свойствами, подобными нашей»
— Рената Лолл физик, Университет Неймегена, Нидерланды

Интересно, что моделирование также намекает на то, что вскоре после Большого взрыва Вселенная прошла через младенческую фазу только с двумя измерениями: одно пространственное и одно временное. Это заключение было сделано независимо от попыток получить уравнения квантовой гравитации, и даже независимо от тех, кто полагает, что появление темной энергии является признаком того, что в нашей Вселенной появляется четвертое пространственное измерение.

Голография
Между тем, Ван Раамсдонк предложил совсем другое представление о появлении пространства-времени, основанное на голографическом принципе. Голограммоподобный принцип того, что у черных дыр вся энтропия находится на поверхности, был впервые представлен Хуаном Малдасеной, приверженцем теории струн из Института Передовых Исследований в Принстоне. Он опубликовал свою модель голографической Вселенной в 1998 году. В этой модели трехмерный «интерьер» Вселенной включал в себя струны и черные дыры, управляемые исключительно силой тяжести, в то время как ее двумерная граница имела элементарные частицы и поля, подчинявшиеся обычным квантовым законам, а не гравитации.

Гипотетические жители трехмерного пространства никогда бы не увидели эту границу, потому что она была бы бесконечно далеко. Но это никак не влияет на математику: все, что происходит в трехмерной Вселенной может быть одинаково хорошо описано уравнениями в случае двумерной границы, и наоборот.

В 2010 году Ван Раамсдонк объяснил запутывание квантовых частиц на границе. Это означает, что данные, полученные в одной части, неизбежно скажутся на другой. Он обнаружил, что если каждая частица запутывается между двух отдельных областей границы, она неуклонно движется к нулю, поэтому квантовая связь между ними исчезает, трехмерное пространство начинает постепенно делиться (как клетка) до тех пор, пока не порвется последняя связь.

Таким образом, трехмерное пространство делится снова и снова, в то время как двумерная граница остается «на связи». Ван Раамсдонк заключил, что трехмерная вселенная идет бок о бок с квантовой запутанностью на границе. Это означает, что, в некотором смысле, квантовая запутанность и пространство-время - это одно и то же.

суббота, 20 сентября 2014 г.

Продавец войны

Продавец войны Николай Федоров «Торговец смертью», «верховный жрец войны», «человек-тайна» — это только часть громких прозвищ, данных ему журналистами. Его биография на три четверти состоит из легенд. Он не был ни монархом, ни политиком, ни генералом, однако приложил руку к падению нескольких империй, включая российскую







 Иллюстрация: Андрей Дорохин У глобальных политических катаклизмов множество причин, и пагубные человеческие страсти не последняя. На их удовлетворении делают карьеры и состояния. Человек, о котором пойдет речь, был «всего лишь» бизнесменом. Для таких людей деньги не пахнут, а судьбы миллионов людей в бизнес-планах не фигурируют. «ГЕНЕРАЛ КИЕФФСКИЙ»: ВОСХОЖДЕНИЕ ВЕЛИКОГО КОМБИНАТОРА Ничто не предвещало ему великой судьбы. Впрочем, секрет выдающейся личности не в благоприятствующей среде, а в умении извлекать выгоду из любых обстоятельств. Захария Василейос, так его назвали при рождении, появился на свет 6 октября 1849 года в семье торговца-грека в турецком городке Мугла. В неспокойном 1821 году семья выезжала из Османской империи в Одессу — оттуда, видимо, и переиначенная на русский манер на случай преследований греков фамилия Захарофф. Впоследствии этот человек постоянно мистифицировал свое прошлое, рассказывая противоречащие друг другу версии происхождения, их подхватывала и множила пресса. Захарофф с детства уяснил, как важно в любой среде казаться своим, и с течением лет накопил коллекцию имен и родослов

                   
БИОГРАФИЯ Жизнь на грани вымысла 
История 
1. Наивный мошенник Подробности лондонского суда в 1873 году над юным Захарией известны только в изложении Стефаноса Скулудиса, записавшего его рассказ. Захарофф попал под суд по обвинению в растрате средств дяди-работодателя, однако утверждал, что был не подручным в лавке родственника, а равноправным партнером. И когда тот задолжал долю прибыли, забрал эти деньги и уехал. Родственник подал в суд, положение Захароффа казалось безнадежным, потому что письмо, подтверждавшее его партнерский статус, было потеряно. И только отправляясь в зал суда из камеры и надевая пальто, юноша нашел в кармане спасительный документ. Когда истец приготовился давать показания под присягой, обвиняемый стал умолять судью не позволять дяде клясться, дабы не очернить себя лжесвидетельством, и предъявил письмо. Суд его оправдал. Скулудис поверил, что письмо имелось, а решение суда было именно таким. Фото: Сэр Бэзил Захарофф, кавалер Большого креста британского ордена Бани В юности в Константинополе он работал и пожарным, и менялой, и гидом, и сводником, и подручным в лавке родственника, но в конце концов отправился покорять Европу. Поначалу получалось как в плутовском романе. Под именем «Горчакоффа, генерала Киеффского» скоропалительно женился на англичанке Эмили Энн Берроуз, потом попал под суд по обвинению в растрате, но тюрьмы избежал. После уехал в Грецию, где подружился с молодым политиком Стефаносом Скулудисом. Затем, меняя имена как перчатки, подвизался в разных авантюрах в Европе и Америке (где попутно отметился еще одним скандалом в духе Остапа Бендера, женившись — при живой первой супруге! — на богачке Дженни Фрэнсис Биллингс). Через Скулудиса Захарофф вышел на шведскую оружейную фирму «Норденфельт» и устроился ее торговым представителем на Балканах. Именно это стало первым шагом на его пути к вершинам оружейного бизнеса. «Абдул-Хамид» (1886) — первую в мире подлодку, выпустившую торпеду из подводного положения, Османская империя купила у фирмы «Норденфельт» В последнюю четверть XIX века предчувствие, а для кого-то и предвкушение грядущего передела мира носилось в воздухе. Страны объединялись в политические блоки и вооружались, оглядываясь друг на друга. Увеличивался спрос на новые механизмы для убийства. Фирма «Норденфельт» вложилась в паровые субмарины. Технически они были несовершенны, их опасались применять в бою, но все же покупали. По крайней мере, у агента Бэзила Захароффа. «Я продал одну подлодку грекам, — хвалился он в интервью, — а после поехал к туркам и продал им две!» Ни одна из трех лодок в битве так и не поучаствовала. Когда в 1886 году американец Хайрем Максим привез в Европу свое революционное изобретение — станковый пулемет максим, Захарофф быстрее прочих оценил его перспективы, и вскоре фирма Максима и «Норденфельт» объявили о слиянии. Объединенная компания обогатилась, продавая лицензии на изготовление пулемета и налаживая его производство по всей Европе (в том числе на оружейных заводах Тулы). Вскоре эту фирму поглотил английский оружейный гигант «Виккерс». Захарофф стал одним из самых пробивных агентов концерна, продававшего и производившего оружие по всему миру. 




Пулемет максим и его создатель Хайрем Стивенс Максим 
ПОКОРЕНИЕ РОССИИ: АРТИЛЛЕРИЯ И БАЛЕТ После поражения в Русско-японской войне (1904–1905) империя лихорадочно перевооружалась. Предполагалось модернизировать военную промышленность, в первое время активно привлекая зарубежный капитал и внедряя передовые иностранные технологии. Обострилась борьба европейских концернов за заказы и концессии в России. Бэзил Захарофф, он же Василий Васильевич Захаров, безукоризненно владеющий русским языком и обладающий большими деньгами, взялся за дело с удвоенной энергией. Коррупция и зависимость от личных связей существовали везде, но в России их масштаб впечатлял. Уже в Первую мировую войну главнокомандующий, великий князь Николай Николаевич жаловался председателю Госдумы Михаилу Родзянко, что не может ничего поделать с артиллерийским ведомством, так как делами там заправляет балерина Матильда Кшесинская. Звезда сцены много лет была пассией генерального инспектора артиллерии, великого князя Сергея Михайловича. Бэзил Захарофф завоевал ее симпатии еще будучи агентом «Норденфельта», она представила его своему покровителю, и это знакомство открыло предприимчивому греку доступ к первым лицам империи. Так что в качестве агента «Виккерса» Захарофф прибыл в Петербург, уже имея связи в верхах. 

История 
2. Удачное пари Про манеру Захароффа договариваться с высшими чинами Петербурга ходили анекдоты. Некий министр никак не соглашался на сделку и приказал торговому агенту более его не беспокоить. Дело было в понедельник. Захарофф ответил, что на всякий случай зайдет на следующий день, в четверг. Министр возразил, что следующий день — вторник. «Спорю на сто тысяч франков, ваше превосходительство, что четверг», — многозначительно улыбнулся Захарофф. Князь Сергей Михайлович, однако, охотнее поддерживал французского конкурента «Виккерса» — компанию «Шнейдер-Крезо». Захарофф легко нашел обходной путь — он знал про слабости военного министра Владимира Сухомлинова, игрока и бонвивана, чья молодая супруга славилась расточительностью. Владимир Александрович стал самым упорным лоббистом интересов «Виккерса», даже в тех случаях, когда условия сделки были явно невыгодны для России. Позже, когда министр окажется на скамье подсудимых по подозрению в шпионаже, это ему припомнят. Морской министр Иван Григорович также получал от Захароффа немалые взятки. Выгодные контракты Захароффу были обеспечены, и на российском рынке «Виккерс» захватил ключевые позиции. Историк Анатолий Уткин пишет: «Эта фирма задолго до 1914 г. заняла совершенно особое место в военном оснащении России, получив фактическую монополию на производство орудий для русской армии». Концерн получил крупные заказы на поставки оружия, строил мощный броненосный крейсер «Рюрик», военно-морскую базу в Николаеве, огромный орудийный завод на Волге. Агент Захарофф хорошо сделал свое дело. В Первую мировую войну некоторые из этих контрактов сыграют роковую роль в судьбе Российской империи. ЦАРИЦЫНСКИЙ КАЗУС: ДЕНЬГИ ИЗ ВОЗДУХА Царицынский завод, самое крупное завоевание Захароффа в борьбе за российский рынок, начали возводить с нуля накануне Первой мировой, в 1913 году. Этот проект оказался более долгим и дорогостоящим, чем предложенное «Шнейдер-Крезо» переоборудование существующих заводов. Предполагалось, что к сентябрю 1915 года предприятие достроят, и «Виккерс» заранее выбил для него большой заказ на орудия от военного и морского министерств и оговорил преимущество при распределении дальнейших закупок. Вскоре выяснилось, что строительство Царицынского завода растягивается на неопределенное время. Собственники винили во всем турок, захвативших в Дарданеллах английские суда с оборудованием. Орудия, которые собирались выпускать в России, в итоге пришлось покупать у «Виккерса» же в Англии. Инспекция обнаружила нечто удивительное: еще ничего не производя, недостроенный завод получал немалую прибыль! «Вы знаете, что там есть? — вопрошал депутат Андрей Шингарев думцев в августе 1915 года. — Есть гостиница, жилой городок, недоконченные мастерские, ни одного поставленного станка и, несомненно, уголовное преступление». Оказалось, заводские управляющие по частям перепродают с наценкой правительственные заказы на изготовление орудий трем российским заводам. Правительство захотело национализировать неэффективное предприятие, но процесс затянулся до Февральской революции. 


История 
3. Красавица и чудовище 





Он встретил ее на ступенях дворца Эскориал. Хрупкая девушка шла под руку с испанским грандом, который вдруг набросился на нее в приступе ярости — и Бэзил не мог не вступиться за даму. Гранд оказался ее мужем и кузеном короля Испании. Была дуэль, раненый Захарофф попал в больницу, благодарная сеньора пришла его навестить, но расстаться с ним надолго уже не смогла. Такова одна из двух версий их знакомства, поведанных сэром Бэзилом. Газетчики пересказывали еще десяток. «Торговец смертью» оказался способен на чувство редкой силы и длительности. Супруг Марии дель Пилар, герцогини де Марчена, был душевнобольным. Аристократка, католичка, она не могла развестись. Захарофф ждал ее почти 40 лет. Они поженились после смерти герцога, Захароффу было 75, невесте — 55. Через 17 месяцев она умерла. Захароффу невиданный по масштабу мировой военный конфликт был только на руку. Во время войны он откровенничал: «Германия в 1914 году была более уязвима, чем думали на Западе и даже в ней самой. Я мог бы показать Антанте как минимум три точки, ударив в которые она бы полностью разрушила военный потенциал противника. Но это привело бы к краху предприятие, которое мы созидали больше века». Спрос на любые виды оружия рос, как и комиссионные Захароффа с контрактов практически во всех вою ющих странах. Ему было неважно, кто на чьей стороне. Увеличивался и его политический вес, лидеры стран Антанты просили его советов. «На совещаниях я стал бесценной фигурой, — говорил Захарофф. — Они требовали оружия, оружия и еще раз оружия, и я мог им его дать». 


ВЕЛИКОЕ ОТСТУПЛЕНИЕ: ОРУЖЕЙНЫЙ ГОЛОД В 1915 году в России надежды на скорое окончание войны развеялись. Запасы державы были истощены, снабжение не налажено. К середине весны ситуация с вооружением близилась к катастрофе. И властям, и союзникам стало очевидно: России попросту нечем воевать. Ее заводы не покрывают и трети потребностей армии, а заграничные поставщики, в первую очередь «Виккерс», не успевают выполнять даже заказы собственных правительств.






 Германия перенесла основной удар на Восточный фронт, и русским оказалось нечего противопоставить огню немецкой тяжелой артиллерии. Пять месяцев продолжалось Великое отступление российской армии. «Снарядов у нас по-прежнему было очень мало, отпускали их, как в аптеке — по столовой ложке, причем со строгим наказом стрелять только в крайних случаях», — вспоминал офицер Эраст Гиацинтов . «Непоправимой катастрофы можно ожидать в любую минуту. Армия больше не отступает, она просто бежит, и вера в ее силу разрушена», — отчитывался перед коллегами военный министр Алексей Поливанов. Орудийный голод стал причиной чудовищных людских потерь, начались повальное дезертирство и массовые сдачи в плен. Россия потеряла промышленно развитые области в Польше и Прибалтике, эвакуация и топливный кризис вызвали перебои в работе и без того перегруженных железных дорог. Империя затрещала по швам. «Эти страшные бедствия лежали в основе русской революции», — подытожил ведущий британский политик тех лет Дэвид Ллойд Джордж воспоминания о Великом отступлении. В следующем году ценой огромных займов российское правительство выправило ситуацию с вооружением, но разочарование во власти, социальная напряженность на фронте и в истощенном войной тылу уже росли как снежный ком, питая антивоенные и революционные настроения, которые в конечном счете привели к падению империи в 1917 году. Одним из главных лозунгов восставшего народа было требование мира. Захарофф же в эти годы занимается в Европе тысячью других дел, например подготовкой военного переворота в Греции.


 История 
4. Рыцарь Британской империи Англия и Франция всеми силами склоняли Грецию вступить в Первую мировую на их стороне, но король Константин, женатый на сестре кайзера Германии, твердо сохранял нейтралитет. Действуя по просьбе французского премьер-министра Аристида Бриана, Захарофф через информагентство Agence Radio настраивал греческую общественность в пользу союза с Антантой, а также финансировал повстанцев, которые во главе с бывшим премьером Элефтериосом Венизелосом выступили против короля. Дело довершили организованная Антантой морская блокада и англо-французский десант в Салониках. Константин отрекся от престола, а Греция объявила войну Германии и ее союзникам. Захароффу было пожаловано звание рыцаря Британской империи. *** Когда развеялась пыль сражений Первой мировой, выяснилось, что погибли миллионы людей, три империи рухнули, четвертой — Османской — оставалось недолго. И мало кто точно знал, за какие заслуги сэр Бэзил Захарофф получил громкие титулы и награды от правительств трех десятков стран… Он вложил деньги в нефть и жил то в Монте-Карло, то во французском замке как король. Кошмары ему не снились.

Подбор очка Кино комедии на выходные...


1. Пингвины мистера Поппера
2. Проект X: Дорвались
3. Мы Миллеры
4. Притворись моей женой
5. Тепло наших тел
6. Вышибала
7. Джунгли зовут! В поисках Марсупилами
8. Мальчишник 2: Из Вегаса в Бангкок
9. Вокруг света за 80 дней
10. Мой парень - ангел
11. Хочу как ты
12. Маска
13. Один дома 2
14. Брюс Всемогущий
15. Похождения призрака
16. Мой парень из зоопарка
17. Добро пожаловать в Зомбилэнд
18. План на игру
19. Папе снова 17
20. Убойные каникулы
21. Прекрасный «принц»
22. Майор Пэйн
23. Без чувств
24. Правила съема: Метод Хитча
25. Лжец Лжец
26. Мамы
27. Очень плохая училка
28. Мальчишник: Часть III
29. Думай, как мужчина
30. Монте-Карло
31. История Золушки 3
32. Мальчишник в Вегасе
33. Большой куш
34. Эйс Вентура: Розыск домашних животных
35. Джей и молчаливый Боб
36. Час пик 3
37. Все или ничего
38. Час пик 2
39. Элвин и бурундуки 3
40. Диктатор
41. Программа защиты принцесс
42. Кадры
43. Идеальный голос
44. Дом с паронармальными явлениями
45. Пять невест
46. Лемони Сникет: 33 несчастья
47. Чарли и шоколадная фабрика
48. Зубная фея
49. Тупой и еще тупее
50. Одноклассники
51. Клик: С пультом по жизни
52. Одноклассники 2
53. Голая правда
54. Смокинг
55. Шанхайские Рыцари
56. Папа-досвидос
57. Поймай толстуху, если сможешь
58. Такие разные близнецы
59. Очень опасная штучка
60. Агент Джонни Инглиш: Перезагрузка
61. Пипец
62. Черный рыцарь
63. Я, снова я и Ирэн
64. Властелин колец: Братва и кольцо
65. Дикий, дикий Вест
66. Цыпочка
67. Всегда говори «Да»
68. Американский пирог
69. Убойное Рождество Гарольда и Кумара
70. Предложение
71. План Б
72. Костолом
73. Она - мужчина
74. Очень страшное кино
75. Такси
76. Впритык
77. Разборка в Бронксе
78. Не грози Южному Централу, попивая сок у себя в квартале
79. Няньки
80. 21 и больше
81. Несносные боссы
82. Рамона и Бизус
83. Никки, дьявол - младший
84. Каратель: Грязное Бельё
85. Сколько у тебя?
86. Сердцеедки
87. Дрянные девчонки
88. Напряги извилины
89. Ночь в музее
90. Золотой Компас
91. Гринч похититель Рождества
92. История Золушки
93. Девять ярдов 2
94. Один дома
95. Фанатки на завтрак не остаются
96. P.S. Я люблю тебя
97. Случайный шпион
98. Дежурный папа
99. Аквамарин
100. Что творят мужчины


пятница, 19 сентября 2014 г.

Американцы планировали взорвать Луну

 Опубликованы рассекреченные документы американских спецслужб, который стали мировой сенсацией.




Власти США в разгар "холодной войны" могли лишить Землю ее естественного спутника - Луны. Как следует из рассекреченных данным американской разведки, которые публикует Newsweek, Белый дом намеревался провести на Луне испытания атомных ракет.

Кроме того, в их планы входило развернуть на спутнике собственные военные базы с тем, чтобы вести слежку за всей планетой и, собственно, Солнечной системой. В частности, США могли бы выводить из строя или сбивать спутники СССР.

Есть и еще один важный момент: американцам удалось во время одной из выставок практически "украсть" советскую ракету. По факту, были сворованы технологии, которые позволили бы запустить миссию на Луну раньше Союза. Что, в итоге, и удалось.

Newsweek уточняет, что советские власти знали о вышеупомянутых планах ЦРУ, однако не давали американцам это понять.

В общей сложности, американцы планировали запустить к Луне более 70 миссий. Но, отмечает издание, достаточно сказать, что даже одна военная база на Луне так и не была построена.

Что происходит с белком внутри живой клетки

Многие даже и не подозревают, как внутри нас происходят поистине удивительные процессы. Предлагаю вам посмотреть далее на микроскопический мир, разглядеть который удалось только с появлением новейших электронных микроскопов нового поколения.


Еще в 2007 году японские исследователи сумели пронаблюдать под микроскопом работу одного из «молекулярных моторов» живой клетки — шагающего белка миозина V, который умеет активно передвигаться вдоль актиновых волокон и перетаскивать прикрепленные к нему грузы. Каждый шаг миозина V начинается с того, что одна из его «ног» (задняя) отделяется от актиновой нити. Затем вторая нога наклоняется вперед, а первая свободно вращается на «шарнире», соединяющем ноги молекулы, до тех пор, пока случайно не коснется актиновой нити. Конечный итог хаотического движения первой ноги оказывается строго детерминирован благодаря фиксированному положению второй.

Давайте узнаем про это подробнее ...


... так шагает кинезин


В основе любых активных движений, совершаемых живыми организмами (от движения хромосом при клеточном делении до мышечных сокращений), лежит работа «молекулярных моторов» — белковых комплексов, части которых способны двигаться друг относительно друга. У высших организмов важнейшими из молекулярных моторов служат молекулы миозина разных типов (I, II, III и т. д., вплоть до XVII), способные активно передвигаться вдоль актиновых волокон.

Многие «молекулярные моторы», в том числе миозин V, используют принцип шагающего движения. Они передвигаются дискретными шажками примерно одинаковой длины, причем впереди оказывается попеременно то одна, то другая из двух «ног» молекулы. Однако многие детали этого процесса остаются неясными.

Сотрудники физического факультета университета Васэда (Department of Physics, Waseda University) в Токио разработали методику, позволяющую наблюдать за работой миозина V в реальном времени под микроскопом. Для этого они сконструировали модифицированный миозин V, у которого стержни ног обладают свойством накрепко «приклеиваться» к тубулиновым микротрубочкам.

Добавляя в раствор модифицированного миозина V фрагменты микротрубочек, ученые получили несколько комплексов, в которых кусок микротрубочки приклеился только к одной ноге миозина V, а вторая осталась свободной. Эти комплексы сохранили способность «шагать» по актиновым волокнам, и за их движениями можно было наблюдать, поскольку фрагменты микротрубочек гораздо крупнее самого миозина, и к тому же их метили флуоресцирующими метками. При этом использовали два экспериментальных дизайна: в одном случае фиксировали в пространстве актиновое волокно, а наблюдения вели за движением фрагмента микротрубочки, а во втором фиксировали микротрубочку и наблюдали за движением фрагмента актинового волокна.


В итоге «походку» миозина V удалось изучить в больших подробностях (см. первый рисунок). Каждый шаг начинается с того, что «задняя» нога миозина отделяется от актинового волокна. Затем та нога, которая осталась прикрепленной к волокну, резко наклоняется вперед. Именно в этот момент расходуется энергия (происходит гидролиз АТФ). После этого «свободная» нога (на рисунках — зеленая) начинает хаотически болтаться на шарнире. Это не что иное, как броуновское движение. Заодно, кстати, ученым удалось впервые показать, что шарнир, соединяющий ноги миозина V, совершенно не стесняет их движений. Рано или поздно зеленая нога касается своим концом актиновой нити и прикрепляется к ней. Место, где она прикрепится к нити (и, следовательно, длина шага) полностью определяются фиксированным наклоном синей ноги.

В эксперименте поиск актиновой нити свободной ногой миозина V занимал несколько секунд; в живой клетке это, видимо, происходит быстрее, поскольку там миозин шагает без гирь на ногах. Грузы — например, внутриклеточные пузырьки, окруженные мембранами — крепятся не к ногам, а к той части молекулы, которая на рисунке изображена как «хвостик».

вторник, 16 сентября 2014 г.

18 примеров того, что мы живём уже в фантастическом будущем

Поезда на магнитном подвесе могут достигать скорости 2 900 км/ч



Когда нам кажется, что мир катится в ад, то мы забываем, что параллельно он летит, как японский поезд, в светлое будущее. Технологии давно переплюнули магию в самых смелых фантазиях писателей и сказочников. Сегодня наши возможности благодаря технологиям так велики, что смело можем назвать и Гарри Поттера, и его наставников магами с их странной ограниченной магией. :)

Предлагаем вам подборку анимированных иллюстраций современных технологий, которые или уже есть у нас, или вот-вот станут частью нашей жизни. Сделают её совершеннее.

3D-печать металлических конструкций

Представьте в будущем печатающиеся мосты и каркасы домов; мир, наполненный гигантскими принтерами. Да, можно вспомнить сопромат и науки о стали, но всё это будет. А потом будут земляне, печатающие себе новый дом в космосе из ещё не открытых веществ!



Принтер, печатающий строки

Сейчас это вроде как шайба, которая печатает строку за строкой. Может, в будущем это будет ваша пуговица или сам телефон, который, будучи положенным на бумагу, напечатает всё то, для чего сегодня нам нужен целый ящик — принтер.



Риалтаймовый перевод

Любой человек, который был в Японии или, например, в Скандинавии, знает, что слова там нечитабельны и нет никакого способа понять хоть что-то из написанного. Весь предыдущий опыт бесполезен. С такими приложениями на смартфоне вы снова начнёте ориентироваться в любом городе мира.



Невидимая замазка

Совершенно невидимый и очень цепкий материал с высоким молекулярным притяжением. Это идеальный материал, например, для реставрации старых вещей. Они будут выглядеть такими же старыми, но будут при этом целыми. :)



Робот, играющий в аэрохоккей



Песок, контролируемый звуком

Пляжные дискотеки никогда не будут прежними!



Умное стекло-хамелеон

Как только вы закроете душевую кабину, это стекло станет матовым. Сфер применения такого стекла безгранично много.



Одежда с химзащитой от загрязнения

Картинка стоит тысячи слов. И да, я хочу такие носки, футболку и кроссовки для бега по лесу!



Машина для пересадки деревьев



Стабилизатор камеры

Невероятной стойкости стабилизатор камеры. Как гироскопист по образованию скажу, что такие технологии уже лет 50 не новость, но здорово, что из космоса и армии они пошли в потребительские товары.



Часы, которые пишут время

Это просто круто!



Камера-дрон для спортсменов

Как бегун и велосипедист могу сказать, что с нетерпением жду новинку. Увидеть заранее, что за холмом, или проверить, нет ли автомобиля за поворотом, и срезать угол. А ещё можно следить на начальной стадии за своей посадкой при езде на велосипеде или движениями при беге — стольких травм можно избежать!



Вентилятор, который работает от вашего тепла

ЭНЕРГОЭФФЕКТИВНОСТЬ!



Умный мусорщик

Ваше дело просто швырнуть скомканый лист, а дело мусорщика — его поймать. ;)



Умная линейка

Эта линейка может сама измерить углы начерченного вами треугольника. В школе я бы оценил!



Инвалидное кресло, которое ходит по лестницам

Просто начните думать про инвалидов, и вы поймёте, как им трудно. Такое кресло для них — это прорыв!



Молния, которая работает как надо